Share this: [addtoany buttons="facebook,twitter,linkedin,email,whatsapp"]

Heart Failure

Dr Healthism
  • 0
  • 25 Feb, 2019 4:48 pm
image

Heart failure (HF), also known as chronic heart failure (CHF), is when the heart is unable to pump sufficiently to maintain blood flow to meet the body’s needs. Signs and symptoms of heart failure commonly include shortness of breath, excessive tiredness, and leg swelling. The shortness of breath is usually worse with exercise, while lying down, and may wake the person at night. A limited ability to exercise is also a common feature. Chest pain, including angina, does not typically occur due to heart failure.

Common causes of heart failure include coronary artery disease including a previous myocardial infarction (heart attack), high blood pressure, atrial fibrillation, valvular heart disease, excess alcohol use, infection, and cardiomyopathy of an unknown cause. These cause heart failure by changing either the structure or the functioning of the heart. The two types of heart failure – heart failure with reduced ejection fraction (HFrEF), and heart failure with preserved ejection fraction (HFpEF) – are based on whether the ability of the left ventricle to contract is affected, or the heart’s ability to relax. The severity of disease is graded by the severity of symptoms with exercise. Heart failure is not the same as myocardial infarction (in which part of the heart muscle dies) or cardiac arrest (in which blood flow stops altogether). Other diseases that may have symptoms similar to heart failure include obesity, kidney failure, liver problems, anemia, and thyroid disease. Heart failure is diagnosed based on the history of the symptoms and a physical examination, with confirmation by echocardiography. Blood tests, electrocardiography, and chest radiography may be useful to determine the underlying cause.

Terminology
Heart failure is a pathophysiological state in which cardiac output is insufficient to meet the needs of the body and lungs. The term “congestive heart failure” is often used, as one of the common symptoms is congestion, or build-up of fluid in a person’s tissues and veins in the lungs or other parts of the body. Specifically, congestion takes the form of water retention and swelling (edema), both as peripheral edema (causing swollen limbs and feet) and as pulmonary edema (causing breathing difficulty), as well as ascites (swollen abdomen). This is a common problem in old age as a result of cardiovascular disease, but it can happen at any age, even in fetuses.

The term “acute” is used to mean rapid onset, and “chronic” refers to long duration. Chronic heart failure is a long-term condition, usually kept stable by the treatment of symptoms. Acute decompensated heart failure is a worsening of chronic heart failure symptoms which can result in acute respiratory distress. High-output heart failure can occur when there is an increased cardiac output. The circulatory overload caused, can result in an increased left ventricular diastolic pressure which can develop into pulmonary congestion (pulmonary edema).

Heart failure is divided into two types based on ejection fraction, which is the proportion of blood pumped out of the heart during a single contraction. Ejection fraction is given as a percentage with the normal range being between 50 and 75%. The two types are:

1) Heart failure due to reduced ejection fraction (HFrEF). Synonyms no longer recommended are “heart failure due to left ventricular systolic dysfunction” and “systolic heart failure”. HFrEFe is associated with an ejection fraction of less than 40%.

2) Heart failure with preserved ejection fraction (HFpEF). Synonyms no longer recommended include “diastolic heart failure” and “heart failure with normal ejection fraction”. HFpEF occurs when the left ventricle contracts normally during systole, but the ventricle is stiff and does not relax normally during diastole, which impairs filling.

Causes
Congestive heart failure
Heart failure may also occur in situations of “high output” (termed “high-output heart failure”), where the amount of blood pumped is more than typical and the heart is unable to keep up. This can occur in overload situations (blood or serum infusions), kidney diseases, chronic severe anemia, beriberi (vitamin B1/thiamine deficiency), hyperthyroidism, cirrhosis, Paget’s disease, multiple myeloma, arteriovenous fistulae, or arteriovenous malformations.

Viral infections of the heart can lead to inflammation of the muscular layer of the heart and subsequently contribute to the development of heart failure. Heart damage can predispose a person to develop heart failure later in life and has many causes including systemic viral infections (e.g., HIV), chemotherapeutic agents such as daunorubicin, cyclophosphamide, and trastuzumab, and abuse of drugs such as alcohol, cocaine, and methamphetamine. An uncommon cause is exposure to certain toxins such as lead and cobalt. Additionally, infiltrative disorders such as amyloidosis and connective tissue diseases such as systemic lupus erythematosus have similar consequences. Obstructive sleep apnea (a condition of sleep wherein disordered breathing overlaps with obesity, hypertension, and/or diabetes) is regarded as an independent cause of heart failure.

Acute decompensation
Chronic stable heart failure may easily decompensate. This most commonly results from an intercurrent illness (such as myocardial infarction (a heart attack), pneumonia), abnormal heart rhythms, uncontrolled hypertension, or a person’s failure to maintain a fluid restriction, diet, or medication. Other factors that may worsen CHF include: anemia, hyperthyroidism, excessive fluid or salt intake, and medication such as NSAIDs and thiazolidinediones. NSAIDs increase the risk twofold.

Medications
A number of medications may cause or worsen the disease. This includes NSAIDS, a number of anesthetic agents such as ketamine, thiazolidinediones, a number of cancer medications, salbutamol, and tamsulosin.

Pathophysiology
Heart failure is caused by any condition which reduces the efficiency of the heart muscle, through damage or overloading. As such, it can be caused by a wide number of conditions, including myocardial infarction (in which the heart muscle is starved of oxygen and dies), hypertension (which increases the force of contraction needed to pump blood) and amyloidosis (in which misfolded proteins are deposited in the heart muscle, causing it to stiffen). Over time these increases in workload will produce changes to the heart itself:

The heart of a person with heart failure may have a reduced force of contraction due to overloading of the ventricle. In a healthy heart, increased filling of the ventricle results in increased contraction force (by the Frank–Starling law of the heart) and thus a rise in cardiac output. In heart failure, this mechanism fails, as the ventricle is loaded with blood to the point where heart muscle contraction becomes less efficient. This is due to reduced ability to cross-link actin and myosin filaments in over-stretched heart muscle.

Prevention
A person’s risk of developing heart failure is inversely related to their level of physical activity. Those who achieved at least 500 MET-minutes/week (the recommended minimum by U.S. guidelines) had lower heart failure risk than individuals who did not report exercising during their free time; the reduction in heart failure risk was even greater in those who engaged in higher levels of physical activity than the recommended minimum. Heart failure can also be prevented by lowering high blood pressure, high blood cholesterol, and controlling diabetes. Also, remaining at the right weight and reducing obesity can help. Lowering salt, alcohol, quitting smoking, and lowering sugar intake may help.

Management
Treatment focuses on improving the symptoms and preventing the progression of the disease. Reversible causes of the heart failure also need to be addressed (e.g. infection, alcohol ingestion, anemia, thyrotoxicosis, arrhythmia, hypertension). Treatments include lifestyle and pharmacological modalities, and occasionally various forms of device therapy and rarely cardiac transplantation.

Acute decompensation
In acute decompensated heart failure (ADHF), the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are adequate. Immediate treatments usually involve some combination of vasodilators such as nitroglycerin, diuretics such as furosemide, and possibly noninvasive positive pressure ventilation (NIPPV). Supplemental oxygen is indicated in those with oxygen saturation levels below 90% but is not recommended in those with normal oxygen levels on room air.

Chronic management
The goals of treatment for people with chronic heart failure are the prolongation of life, the prevention of acute decompensation and the reduction of symptoms, allowing for greater activity.

Heart failure can result from a variety of conditions. In considering therapeutic options, it is important to first exclude reversible causes, including thyroid disease, anemia, chronic tachycardia, alcohol abuse, hypertension and dysfunction of one or more heart valves. Treatment of the underlying cause is usually the first approach to treating heart failure. However, in the majority of cases, either no primary cause is found or treatment of the primary cause does not restore normal heart function. In these cases, behavioral, medical and device treatment strategies exist which can provide a significant improvement in outcomes, including the relief of symptoms, exercise tolerance, and a decrease in the likelihood of hospitalization or death. Breathlessness rehabilitation for chronic obstructive pulmonary disease (COPD) and heart failure has been proposed with exercise training as a core component. Rehabilitation should also include other interventions to address shortness of breath including psychological and education needs of people and needs of carers.

Lifestyle
Behavioral modification is a primary consideration in chronic heart failure management program, with dietary guidelines regarding fluid and salt intake. Fluid restriction is important to reduce fluid retention in the body and to correct the hyponatremic status of the body. The evidence of benefit of reducing salt however is poor as of 2018.

Exercise should be encouraged and tailored to suit individual capabilities. The inclusion of regular physical conditioning as part of a cardiac rehabilitation program can significantly improve quality of life and reduce the risk of hospital admission for worsening symptoms; however, there is no evidence for a reduction in mortality rates as a result of exercise. Furthermore, it is not clear whether this evidence can be extended to people with heart failure with preserved ejection fraction (HFpEF) or to those whose exercise regimen takes place entirely at home.

Home visits and regular monitoring at heart failure clinics reduce the need for hospitalization and improve life expectancy.

Medication
First-line therapy for people with heart failure due to reduced systolic function should include angiotensin-converting enzyme (ACE) inhibitors (ACE-I) or angiotensin receptor blockers (ARBs) if the person develops a long term cough as a side effect of the ACE-I. Use of medicines from this class is associated with improved survival and quality of life in people with heart failure.

Beta-adrenergic blocking agents (beta blockers) also form part of the first line of treatment, adding to the improvement in symptoms and mortality provided by ACE-I/ARB. The mortality benefits of beta blockers in people with systolic dysfunction who also have atrial fibrillation (AF) is more limited than in those who do not have AF. If the ejection fraction is not diminished (HFpEF), the benefits of beta blockers are more modest; a decrease in mortality has been observed but reduction in hospital admission for uncontrolled symptoms has not been observed.

In people who are intolerant of ACE-I and ARBs or who have significant kidney dysfunction, the use of combined hydralazine and a long-acting nitrate, such as isosorbide dinitrate, is an effective alternate strategy. This regimen has been shown to reduce mortality in people with moderate heart failure. It is especially beneficial in African-Americans (AA). In AAs who are symptomatic, hydralazine and isosorbide dinitrate (H+I) can be added to ACE-I or ARBs.

In people with markedly reduced ejection fraction, the use of an aldosterone antagonist, in addition to beta blockers and ACE-I, can improve symptoms and reduce mortality.

Second-line medications for CHF do not confer a mortality benefit. Digoxin is one such medication. Its narrow therapeutic window, a high degree of toxicity, and the failure of multiple trials to show a mortality benefit have reduced its role in clinical practice. It is now used in only a small number of people with refractory symptoms, who are in atrial fibrillation and/or who have chronic low blood pressure.

Diuretics have been a mainstay of treatment for treatment of fluid accumulation, and include diuretics classes such as loop diuretics, thiazide-like diuretic, and potassium-sparing diuretic. Although widely used, evidence on their efficacy and safety is limited, with the exception of mineralocorticoid antagonists such as spironolactone. Mineralocorticoid antagonists in those under 75 years old appear to decrease the risk of death. A recent Cochrane review found that in small studies, the use of diuretics appeared to have improved mortality in individuals with heart failure. However, the extent to which these results can be extrapolated to a general population is unclear due to the small number of participants in the cited studies.

Anemia is an independent factor in mortality in people with chronic heart failure. The treatment of anemia significantly improves quality of life for those with heart failure, often with a reduction in severity of the NYHA classification, and also improves mortality rates. The latest European guidelines (2012) recommend screening for iron-deficient anemia and treating with parenteral iron if anemia is found.

The decision to anticoagulate people with HF, typically with left ventricular ejection fractions <35% is debated, but generally, people with coexisting atrial fibrillation, a prior embolic event, or conditions which increase the risk of an embolic event such as amyloidosis, left ventricular noncompaction, familial dilated cardiomyopathy, or a thromboembolic event in a first-degree relative.

Vasopressin receptor antagonist can also be used to treat heart failure. Conivaptan is the first drug approved by US Food and Drug Administration for the treatment of euvolemic hyponatremia in those with heart failure. In rare cases hypertonic 3% saline together with diuretics may be used to correct hyponatremia.

Sacubitril/valsartan is a combination medication for the treatment of heart failure with reduced left ventricular ejection fraction. It has been in use as an alternative to ACE inhibitors and beta blockers.

Prognosis
Prognosis in heart failure can be assessed in multiple ways including clinical prediction rules and cardiopulmonary exercise testing. Clinical prediction rules use a composite of clinical factors such as lab tests and blood pressure to estimate prognosis. Among several clinical prediction rules for prognosticating acute heart failure, the ‘EFFECT rule’ slightly outperformed other rules in stratifying people and identifying those at low risk of death during hospitalization or within 30 days. Easy methods for identifying people that are low-risk are:

ADHERE Tree rule indicates that people with blood urea nitrogen < 43 mg/dl and systolic blood pressure at least 115 mm Hg have less than 10% chance of inpatient death or complications. BWH rule indicates that people with systolic blood pressure over 90 mm Hg, respiratory rate of 30 or fewer breaths per minute, serum sodium over 135 mmol/L, no new ST-T wave changes have less than 10% chance of inpatient death or complications. A very important method for assessing prognosis in people with advanced heart failure is cardiopulmonary exercise testing (CPX testing). CPX testing is usually required prior to heart transplantation as an indicator of prognosis. Cardiopulmonary exercise testing involves measurement of exhaled oxygen and carbon dioxide during exercise. The peak oxygen consumption (VO2 max) is used as an indicator of prognosis. As a general rule, a VO2 max less than 12–14 cc/kg/min indicates a poor survival and suggests that the person may be a candidate for a heart transplant. People with a VO2 max<10 cc/kg/min have a clearly poorer prognosis. The most recent International Society for Heart and Lung Transplantation (ISHLT) guidelines also suggest two other parameters that can be used for evaluation of prognosis in advanced heart failure, the heart failure survival score and the use of a criterion of VE/VCO2 slope > 35 from the CPX test. The heart failure survival score is a score calculated using a combination of clinical predictors and the VO2 max from the cardiopulmonary exercise test.

Heart failure is associated with significantly reduced physical and mental health, resulting in a markedly decreased quality of life. With the exception of heart failure caused by reversible conditions, the condition usually worsens with time. Although some people survive many years, progressive disease is associated with an overall annual mortality rate of 10%.

Approximately 18 of every 1000 persons will experience an ischemic stroke during the first year after diagnosis of HF. As the duration of follow-up increases, the stroke rate rises to nearly 50 strokes per 1000 cases of HF by 5 years.

COMMENTS & REVIEWS

Leave a Reply

×