Share this:

Hairy Cell Leukemia

Dr Healthism
  • 0
  • 23 Feb, 2019 9:24 am

Hairy cell leukemia is an uncommon hematological malignancy characterized by an accumulation of abnormal B lymphocytes. It is usually classified as a sub-type of chronic lymphocytic leukemia (CLL). Hairy cell leukemia makes up approximately 2% of all leukemias, with fewer than 2,000 new cases diagnosed annually in North America and Western Europe combined.

Hairy cell leukemia was originally described as histiocytic leukemia, malignant reticulosis, or lymphoid myelofibrosis in publications dating back to the 1920s. The disease was formally named leukemic reticuloendotheliosis and its characterization significantly advanced by Bertha Bouroncle and colleagues at The Ohio State University College of Medicine in 1958. Its common name, which was coined in 1966, is derived from the “hairy” appearance of the malignant B cells under a microscope.

Signs and symptoms
In hairy cell leukemia, the “hairy cells” (malignant B lymphocytes) accumulate in the bone marrow, interfering with the production of normal white blood cells, red blood cells, and platelets. Consequently, patients may develop infections related to low white blood cell count, anemia and fatigue due to a lack of red blood cells, or easy bleeding due to a low platelet count. Leukemic cells may gather in the spleen and cause it to swell; this can have the side effect of making the person feel full even when he or she has not eaten much.

Hairy cell leukemia is commonly diagnosed after a routine blood count shows unexpectedly low numbers of one or more kinds of normal blood cells, or after unexplained bruises or recurrent infections in an otherwise apparently healthy patient.

Platelet function may be somewhat impaired in HCL patients, although this does not appear to have any significant practical effect. It may result in somewhat more mild bruises than would otherwise be expected for a given platelet count or a mildly increased bleeding time for a minor cut. It is likely the result of producing slightly abnormal platelets in the overstressed bone marrow tissue.

Patients with a high tumor burden may also have somewhat reduced levels of cholesterol, especially in patients with an enlarged spleen. Cholesterol levels return to more normal values with successful treatment of HCL.

As with many cancers, the cause of hairy cell leukemia is unknown. Exposure to tobacco smoke, ionizing radiation, or industrial chemicals (with the possible exception of diesel) does not appear to increase the risk of developing HCL. Farming and gardening correlate with an increased risk of HCL development in some studies which does not necessarily imply causation.

Recent studies have identified somatic BRAF V600E mutations in all patients with the classic form of hairy cell leukemia thus sequenced, but in no patients with the variant form.

The U.S. Institute of Medicine (IOM) sees a correlation which permits an association between exposure to herbicides and later development of chronic B-cell leukemias and lymphomas in general. The IOM report emphasizes that neither animal nor human studies indicate an association of herbicides with HCL specifically. However, the IOM extrapolated data from chronic lymphocytic leukemia and non-Hodgkin lymphoma to conclude that HCL and other rare B-cell neoplasms may share this risk factor. As a result of the IOM report, the U.S. Department of Veterans Affairs considers HCL an illness presumed to be a service-related disability (see Agent Orange).

Human T-lymphotropic virus 2 (HTLV-2) has been isolated in a small number of patients with the variant form of HCL. In the 1980s, HTLV-2 was identified in a patient with a T-cell lymphoproliferative disease; this patient later developed hairy cell leukemia (a B cell disease), but HTLV-2 was not found in the hairy cell clones. There is no evidence that HTLV-II causes any sort of hematological malignancy, including HCL.

Pancytopenia in HCL is caused primarily by marrow failure and splenomegaly. Bone marrow failure is caused by the accumulation of hairy cells and reticulin fibrosis in the bone marrow, as well as by the detrimental effects of dysregulated cytokine production. Splenomegaly reduces blood counts through sequestration, marginalization, and destruction of healthy blood cells inside the spleen.

Hairy cells are nearly mature B cells, which are activated clonal cells with signs of VH gene differentiation. They may be related to pre-plasma marginal zone B cells or memory cells.

Cytokine production is disturbed in HCL. Hairy cells produce and thrive on TNF-alpha. This cytokine also suppresses normal production of healthy blood cells in the bone marrow.

Unlike healthy B cells, hairy cells express and secrete an immune system protein called Interleukin-2 receptor (IL-2R). In HCL-V, only part of this receptor is expressed. As a result, disease status can be monitored by measuring changes in the amount of IL-2R in the blood serum. The level increases as hairy cells proliferate, and decreases when they are killed. Although uncommonly used in North America and northern Europe, this test correlates better with disease status and predicts relapse more accurately than any other test.

Hairy cells respond to normal production of some cytokines by T cells with increased growth. Treatment with Interferon-alpha suppresses the production of this pro-growth cytokine from T cells. A low level of T cells, which is commonly seen after treatment with cladribine or pentostatin, and the consequent reduction of these cytokines, is also associated with reduced levels of hairy cells.

In June 2011, E Tiacci et al discovered that 100% of hairy-cell leukaemia samples analysed had the oncogenic BRAF mutation V600E, and proposed that this is the disease’s driver mutation. Until this point, only a few genomic imbalances had been found in the hairy cells, such as trisomy 5 had been found. The expression of genes is also dysregulated in a complex and specific pattern. The cells under express 3p24, 3p21, 3q13.3-q22, 4p16, 11q23, 14q22-q24, 15q21-q22, 15q24-q25, and 17q22-q24 and overexpress 13q31 and Xq13.3-q21. It has not yet been demonstrated that any of these changes have any practical significance to the patient.

Because the cause is unknown, no effective preventive measures can be taken.

Because the disease is rare, routine screening is not cost-effective.

Several treatments are available, and successful control of the disease is common.

Not everyone needs treatment immediately. Treatment is usually given when the symptoms of the disease interfere with the patient’s everyday life, or when white blood cell or platelet counts decline to dangerously low levels, such as an absolute neutrophil count below one thousand cells per microliter (1.0 K/uL). Not all patients need treatment immediately upon diagnosis.

Treatment delays are less important than in solid tumors. Unlike most cancers, treatment success does not depend on treating the disease at an early stage. Because delays do not affect treatment success, there are no standards for how quickly a patient should receive treatment. However, waiting too long can cause its own problems, such as an infection that might have been avoided by proper treatment to restore immune system function. Also, having a higher number of hairy cells at the time of treatment can make certain side effects somewhat worse, as some side effects are primarily caused by the body’s natural response to the dying hairy cells. This can result in the hospitalization of a patient whose treatment would otherwise be carried out entirely at the hematologist’s office.

Single-drug treatment is typical. Unlike most cancers, only one drug is normally given to a patient at a time. While monotherapy is normal, combination therapy—typically using one first-line therapy and one second-line therapy—is being studied in current clinical trials and is used more frequently for refractory cases. Combining rituximab with cladribine or pentostatin may or may not produce any practical benefit to the patient. Combination therapy is almost never used with a new patient. Because the success rates with purine analog monotherapy are already so high, the additional benefit from immediate treatment with a second drug in a treatment-naïve patient is assumed to be very low. For example, one round of either cladribine or pentostatin gives the median first-time patient a decade-long remission; the addition of rituximab, which gives the median patient only three or four years, might provide no additional value for this easily treated patient. In a more difficult case, however, the benefit from the first drug may be substantially reduced and therefore a combination may provide some benefit.

First-line therapy
Cladribine (2CDA) and pentostatin (DCF) are the two most common first-line therapies. They both belong to a class of medications called purine analogs, which have mild side effects compared to traditional chemotherapy regimens.

Cladribine can be administered by injection under the skin, by infusion over a couple of hours into a vein, or by a pump worn by the patient that provides a slow drip into a vein, 24 hours a day for 7 days. Most patients receive cladribine by IV infusion once a day for five to seven days, but more patients are being given the option of taking this drug once a week for six weeks. The different dosing schedules used with cladribine are approximately equally effective and equally safe. Relatively few patients have significant side effects other than fatigue and a high fever caused by the cancer cells dying, although complications like infection and acute kidney failure have been seen.

Pentostatin is chemically similar to cladribine, and has a similar success rate and side effect profile, but it is always given over a much longer period of time, usually one dose by IV infusion every two weeks for three to six months.

During the weeks following treatment the patient’s immune system is severely weakened, but their bone marrow will begin to produce normal blood cells again. Treatment often results in long-term remission. About 85% of patients achieve a complete response from treatment with either cladribine or pentostatin, and another 10% receive some benefit from these drugs, although there is no permanent cure for this disease. If the cancer cells return, the treatment may be repeated and should again result in remission, although the odds of success decline with repeated treatment. Remission lengths vary significantly, from one year to more than twenty years. The median patient can expect a treatment-free interval of about ten years.

It does not seem to matter which drug a patient receives. A patient who is not successfully treated with one of these two drugs has a reduced chance of being successfully treated with the other. However, there are other options.

Second-line therapy
If a patient is resistant to either cladribine or pentostatin, then second-line therapy is pursued.

Monoclonal antibodies The most common treatment for cladribine-resistant disease is infusing monoclonal antibodies that destroy cancerous B cells. Rituximab is by far the most commonly used. Most patients receive one IV infusion over several hours each week for four to eight weeks. A 2003 publication found two partial and ten complete responses out of 15 patients with relapsed disease, for a total of 80% responding. The median patient (including non-responders) did not require further treatment for more than three years. This eight-dose study had a higher response rate than a four-dose study at Scripps, which achieved only 25% response rate. Rituximab has successfully induced a complete response in Hairy Cell-Variant.

Rituximab’s major side effect is serum sickness, commonly described as an “allergic reaction”, which can be severe, especially on the first infusion. Serum sickness is primarily caused by the antibodies clumping during infusion and triggering the complement cascade. Although most patients find that side effects are adequately controlled by anti-allergy drugs, some severe, and even fatal, reactions have occurred. Consequently, the first dose is always given in a hospital setting, although subsequent infusions may be given in a physician’s office. Remissions are usually shorter than with the preferred first-line drugs, but hematologic remissions of several years’ duration are not uncommon.

Other B cell-destroying monoclonal antibodies such as Alemtuzumab, Ibritumomab tiuxetan and I-131 Tositumomab may be considered for refractory cases.

Interferon-alpha Interferon-alpha is an immune system hormone that is very helpful to a relatively small number of patients, and somewhat helpful to most patients. In about 65% of patients, the drug helps stabilize the disease or produce a slow, minor improvement for a partial response.

The typical dosing schedule injects at least 3 million units of Interferon-alpha (not pegylated versions) three times a week, although the original protocol began with six months of daily injections.

Some patients tolerate IFN-alpha very well after the first couple of weeks, while others find that its characteristic flu-like symptoms persist. About 10% of patients develop a level of depression. It is possible that, by maintaining a steadier level of the hormone in the body, that daily injections might cause fewer side effects in selected patients. Drinking at least two liters of water each day, while avoiding caffeine and alcohol, can reduce many of the side effects.

A drop in blood counts is usually seen during the first one to two months of treatment. Most patients find that their blood counts get worse for a few weeks immediately after starting treatment, although some patients find their blood counts begin to improve within just two weeks.

It typically takes six months to figure out whether this therapy is useful. Common criteria for treatment success include:

normalization of hemoglobin levels (above 12.0 g/dL),
a normal or somewhat low platelet count (above 100 K/µL), and
a normal or somewhat low absolute neutrophil count (above 1.5 K/µL).
If it is well tolerated, patients usually take the hormone for 12 to 18 months. An attempt may be made then to end the treatment, but most patients discover that they need to continue taking the drug for it to be successful. These patients often continue taking this drug indefinitely, until either the disease becomes resistant to this hormone, or the body produces an immune system response that limits the drug’s ability to function. A few patients are able to achieve a sustained clinical remission after taking this drug for six months to one year. This may be more likely when IFN-alpha has been initiated shortly after another therapy. Interferon-alpha is considered the drug of choice for pregnant women with active HCL, although it carries some risks, such as the potential for decreased blood flow to the placenta.

Interferon-alpha works by sensitizing the hairy cells to the killing effect of the immune system hormone TNF-alpha, whose production it promotes. IFN-alpha works best on classic hairy cells that are not protectively adhered to vitronectin or fibronectin, which suggests that patients who encounter less fibrous tissue in their bone marrow biopsies may be more likely to respond to Interferon-alpha therapy. It also explains why non-adhered hairy cells, such as those in the bloodstream, disappear during IFN-alpha treatment well before reductions are seen in adhered hairy cells, such as those in the bone marrow and spleen.

Other treatments
Splenectomy can produce long-term remissions in patients whose spleens seem to be heavily involved, but its success rate is noticeably lower than cladribine or pentostatin. Splenectomies are also performed for patients whose persistently enlarged spleens cause significant discomfort or in patients whose persistently low platelet counts suggest idiopathic thrombocytopenic purpura.

Bone marrow transplants are usually shunned in this highly treatable disease because of the inherent risks in the procedure. They may be considered for refractory cases in younger, otherwise healthy individuals. “Mini-transplants” are possible.

People with low numbers of red blood cells or platelets may also receive red blood cells and platelets through blood transfusions. Blood transfusions are always irradiated to remove white blood cells and thereby reduce the risk of graft-versus-host disease. Affected people may also receive a hormone to stimulate production of red blood cells. These treatments may be medically necessary, but do not kill the hairy cells.

People with low neutrophil counts may be given filgrastim or a similar hormone to stimulate production of white blood cells. However, a 1999 study indicates that routine administration of this expensive injected drug has no practical value for HCL patients after cladribine administration. In this study, patients who received filgrastim were just as likely to experience a high fever and to be admitted to the hospital as those who did not, even though the drug artificially inflated their white blood cell counts. This study leaves open the possibility that filgrastim may still be appropriate for patients who have symptoms of infection, or at times other than shortly after cladribine treatment.

Although hairy cells are technically long-lived, instead of rapidly dividing, some late-stage patients are treated with broad-spectrum chemotherapy agents such as methotrexate that are effective at killing rapidly dividing cells. This is not typically attempted unless all other options have been exhausted and it is typically unsuccessful.

Treatment success
More than 95% of new patients are treated well or at least adequately by cladribine or pentostatin. A majority of new patients can expect a disease-free remission time span of about ten years, or sometimes much longer after taking one of these drugs just once. If re-treatment is necessary in the future, the drugs are normally effective again, although the average length of remission is somewhat shorter in subsequent treatments.

As with B-cell chronic lymphocytic leukemia, mutations in the IGHV on hairy cells are associated with better responses to initial treatments and with prolonged survival.

How soon after treatment a patient feels “normal” again depends on several factors, including:

how advanced the disease was at the time of treatment;
the patient’s underlying health status;
whether the patient had a “complete response” or only a partial response to the treatment;
whether the patient experienced any of the rare, but serious side effects such as kidney failure;
how aggressive the individual’s disease is;
whether the patient is experiencing unusual psychological trauma from the “cancer” diagnosis; and
how the patient perceived his or her pre-treatment energy level and daily functioning.


Leave a Reply

× Whatsapp