Diabetic Ketoacidosis (DKA)


Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of diabetes mellitus. Signs and symptoms may include vomiting, abdominal pain, deep gasping breathing, increased urination, weakness, confusion, and occasionally loss of consciousness. A person’s breath may develop a specific smell. Onset of symptoms is usually rapid. In some cases people may not realize they previously had diabetes.

DKA happens most often in those with type 1 diabetes, but can also occur in those with other types of diabetes under certain circumstances. Triggers may include infection, not taking insulin correctly, stroke, and certain medications such as steroids. DKA results from a shortage of insulin; in response the body switches to burning fatty acids which produces acidic ketone bodies. DKA is typically diagnosed when testing finds high blood sugar, low blood pH, and ketoacids in either the blood or urine.

The primary treatment of DKA is with intravenous fluids and insulin. Depending on the severity, insulin may be given intravenously or by injection under the skin. Usually potassium is also needed to prevent the development of low blood potassium. Throughout treatment blood sugar and potassium levels should be regularly checked. Antibiotics may be required in those with an underlying infection. In those with severely low blood pH, sodium bicarbonate may be given; however, its use is of unclear benefit and typically not recommended.

Rates of DKA vary around the world. In the United Kingdom, about 4% of people with type 1 diabetes develop DKA each year, while in Malaysia the condition affects about 25% a year. DKA was first described in 1886 and, until the introduction of insulin therapy in the 1920s, it was almost universally fatal. The risk of death with adequate and timely treatment is around 1–4%.

Signs and symptoms
The symptoms of an episode of diabetic ketoacidosis usually evolve over a period of about 24 hours. Predominant symptoms are nausea and vomiting, pronounced thirst, excessive urine production and abdominal pain that may be severe. In severe DKA, breathing becomes rapid and of a deep, gasping character, called “Kussmaul breathing”. The abdomen may be tender to the point that a serious abdominal condition may be suspected, such as acute pancreatitis, appendicitis or gastrointestinal perforation. Vomiting blood that resembles coffee grounds occurs in a minority of people and tends to originate from erosion of the esophagus. In severe DKA, there may be confusion or a marked decrease in alertness, including coma.

On physical examination there is usually clinical evidence of dehydration, such as a dry mouth and decreased skin turgor. If the dehydration is profound enough to cause a decrease in the circulating blood volume, a rapid heart rate and low blood pressure may be observed. Often, a “ketotic” odor is present, which is often described as “fruity”. If Kussmaul respiration is present, this is reflected in an increased respiratory rate.

Small children with DKA are relatively prone to brain swelling, also called cerebral edema, which may cause headache, coma, loss of the pupillary light reflex, and can progress to death. It occurs in about 1 out of 100 children with DKA and more rarely occurs in adults.

DKA most frequently occurs in those who know they have diabetes, but it may also be the first presentation in someone who had not previously been known to be diabetic. There is often a particular underlying problem that has led to the DKA episode; this may be intercurrent illness (pneumonia, influenza, gastroenteritis, a urinary tract infection), pregnancy, inadequate insulin administration (e.g. defective insulin pen device), myocardial infarction (heart attack), stroke or the use of cocaine. Young people with recurrent episodes of DKA may have an underlying eating disorder, or may be using insufficient insulin for fear that it will cause weight gain.

Diabetic ketoacidosis may occur in those previously known to have diabetes mellitus type 2 or in those who on further investigations turn out to have features of type 2 diabetes (e.g. obesity, strong family history); this is more common in African, African-American and Hispanic people. Their condition is then labeled “ketosis-prone type 2 diabetes”.

Drugs in the gliflozin class (SGLT2 inhibitors), which are generally used for type 2 diabetes, have been associated with cases of diabetic ketoacidosis where the blood sugars are not significantly elevated (“euglycemic DKA”). This may be because they were being used in people with type 1 diabetes, but in those with type 2 diabetes it may be as a result of an increase in glucagon levels.

Attacks of DKA can be prevented in those known to have diabetes to an extent by adherence to “sick day rules”; these are clear-cut instructions to person on how to treat themselves when unwell. Instructions include advice on how much extra insulin to take when sugar levels appear uncontrolled, an easily digestible diet rich in salt and carbohydrates, means to suppress fever and treat infection, and recommendations when to call for medical help.

People with diabetes can monitor their own ketone levels when unwell and seek help if they are elevated.

The main aims in the treatment of diabetic ketoacidosis are replacing the lost fluids and electrolytes while suppressing the high blood sugars and ketone production with insulin. Admission to an intensive care unit or similar high-dependency area or ward for close observation may be necessary.

Fluid replacement
The amount of fluid replaced depends on the estimated degree of dehydration. If dehydration is so severe as to cause shock (severely decreased blood pressure with insufficient blood supply to the body’s organs), or a depressed level of consciousness, rapid infusion of saline (1 liter for adults, 10 ml/kg in repeated doses for children) is recommended to restore circulating volume. Slower rehydration based on calculated water and sodium shortage may be possible if the dehydration is moderate, and again saline is the recommended fluid. Very mild ketoacidosis with no associated vomiting and mild dehydration may be treated with oral rehydration and subcutaneous rather than intravenous insulin under observation for signs of deterioration.

A special but unusual consideration is cardiogenic shock, where the blood pressure is decreased not due to dehydration but due to inability of the heart to pump blood through the blood vessels. This situation requires ICU admission, monitoring of the central venous pressure (which requires the insertion of a central venous catheter in a large upper body vein), and the administration of medication that increases the heart pumping action and blood pressure.

Some guidelines recommend a bolus (initial large dose) of insulin of 0.1 unit of insulin per kilogram of body weight. This can be administered immediately after the potassium level is known to be higher than 3.3 mmol/l; if the level is any lower, administering insulin could lead to a dangerously low potassium level (see below). Other guidelines recommend delaying the initiation of insulin until fluids have been administered. It is possible to use rapid acting insulin analogs injections under the skin for mild or moderate cases.

In general, insulin is given at 0.1 unit/kg per hour to reduce the blood sugars and suppress ketone production. Guidelines differ as to which dose to use when blood sugar levels start falling; some recommend reducing the dose of insulin once glucose falls below 16.6 mmol/l (300 mg/dl) but other recommend infusing glucose in addition to saline to allow for ongoing infusion of higher doses of insulin.

Potassium levels can fluctuate severely during the treatment of DKA, because insulin decreases potassium levels in the blood by redistributing it into cells via increased sodium-potassium pump activity. A large part of the shifted extracellular potassium would have been lost in urine because of osmotic diuresis. Hypokalemia (low blood potassium concentration) often follows treatment. This increases the risk of dangerous irregularities in the heart rate. Therefore, continuous observation of the heart rate is recommended, as well as repeated measurement of the potassium levels and addition of potassium to the intravenous fluids once levels fall below 5.3 mmol/l. If potassium levels fall below 3.3 mmol/l, insulin administration may need to be interrupted to allow correction of the hypokalemia.

The administration of sodium bicarbonate solution to rapidly improve the acid levels in the blood is controversial. There is little evidence that it improves outcomes beyond standard therapy, and indeed some evidence that while it may improve the acidity of the blood, it may actually worsen acidity inside the body’s cells and increase the risk of certain complications. Its use is therefore discouraged, although some guidelines recommend it for extreme acidosis (pH<6.9), and smaller amounts for severe acidosis (pH 6.9–7.0).

Cerebral edema
Cerebral edema, if associated with coma, often necessitates admission to intensive care, artificial ventilation, and close observation. The administration of fluids is slowed. The ideal treatment of cerebral edema in DKA is not established, but intravenous mannitol and hypertonic saline (3%) are used—as in some other forms of cerebral edema—in an attempt to reduce the swelling.

Resolution of DKA is defined as general improvement in the symptoms, such as the ability to tolerate oral nutrition and fluids, normalization of blood acidity (pH>7.3), and absence of ketones in blood (<1 mmol/l) or urine. Once this has been achieved, insulin may be switched to the usual subcutaneously administrered regimen, one hour after which the intravenous administration can be discontinued.

In people with suspected ketosis-prone type 2 diabetes, determination of antibodies against glutamic acid decarboxylase and islet cells may aid in the decision whether to continue insulin administration long-term (if antibodies are detected), or whether to withdraw insulin and attempt treatment with oral medication as in type 2 diabetes. Generally speaking, routine measurement of C-peptide as a measure of insulin production is not recommended unless there is genuine doubt as to whether someone has type 1 or type 2 diabetes.

Facebook Comments

Leave a Reply