Botulism

Botulism is a rare and potentially fatal illness caused by a toxin produced by the bacterium Clostridium botulinum. The disease begins with weakness, blurred vision, feeling tired, and trouble speaking. This may then be followed by weakness of the arms, chest muscles, and legs. Vomiting, swelling of the abdomen, and diarrhea may also occur. The disease does not usually affect consciousness or cause a fever.

Botulism can be spread in several different ways. The bacterial spores which cause it are common in both soil and water.They produce the botulinum toxin when exposed to low oxygen levels and certain temperatures. Foodborne botulism happens when food containing the toxin is eaten. Infant botulism happens when the bacteria develops in the intestines and releases the toxin. This typically only occurs in children less than six months old, as protective mechanisms develop after that time. Wound botulism is found most often among those who inject street drugs. In this situation, spores enter a wound, and in the absence of oxygen, release the toxin. It is not passed directly between people. The diagnosis is confirmed by finding the toxin or bacteria in the person in question.

Prevention is primarily by proper food preparation. The toxin, though not the organism, is destroyed by heating it to more than 85 °C (185 °F) for longer than 5 minutes. Honey can contain the organism, and for this reason, honey should not be fed to children under 12 months. Treatment is with an antitoxin. In those who lose their ability to breathe on their own, mechanical ventilation may be necessary for months. Antibiotics may be used for wound botulism. Death occurs in 5 to 10% of people. Botulism also affects many other animals. The word is from Latin, botulus, meaning sausage. Early descriptions of botulism date from at least as far back as 1793 in Germany.

Signs and symptoms
The muscle weakness of botulism characteristically starts in the muscles supplied by the cranial nerves—a group of twelve nerves that control eye movements, the facial muscles and the muscles controlling chewing and swallowing. Double vision, drooping of both eyelids, loss of facial expression and swallowing problems may therefore occur. In addition to affecting the voluntary muscles, it can also cause disruptions in the autonomic nervous system. This is experienced as a dry mouth and throat (due to decreased production of saliva), postural hypotension (decreased blood pressure on standing, with resultant lightheadedness and risk of blackouts), and eventually constipation (due to decreased forward movement of intestinal contents). Some of the toxins (B and E) also precipitate nausea, vomiting, and difficulty with talking. The weakness then spreads to the arms (starting in the shoulders and proceeding to the forearms) and legs (again from the thighs down to the feet).

Severe botulism leads to reduced movement of the muscles of respiration, and hence problems with gas exchange. This may be experienced as dyspnea (difficulty breathing), but when severe can lead to respiratory failure, due to the buildup of unexhaled carbon dioxide and its resultant depressant effect on the brain. This may lead to respiratory compromise and death if untreated.

Clinicians frequently think of the symptoms of botulism in terms of a classic triad: bulbar palsy and descending paralysis, lack of fever, and clear senses and mental status (“clear sensorium”).

Causes
Clostridium botulinum is an anaerobic, Gram positive, spore-forming rod. Botulinum toxin is one of the most powerful known toxins: about one microgram is lethal to humans when inhaled. It acts by blocking nerve function (neuromuscular blockade) through inhibition of the excitatory neurotransmitter acetylcholine’s release from the presynaptic membrane of neuromuscular junctions in the somatic nervous system. This causes paralysis. Advanced botulism can cause respiratory failure by paralysing the muscles of the chest; this can progress to respiratory arrest. Furthermore, acetylcholine release from the presynaptic membranes of muscarinic nerve synapses is blocked. This can lead to a variety of autonomic signs and symptoms described above.

In all cases, illness is caused by the botulinum toxin produced by the bacterium C. botulinum in anaerobic conditions and not by the bacterium itself. The pattern of damage occurs because the toxin affects nerves that fire (depolarize) at a higher frequency first

Diagnosis
For botulism in babies, diagnosis should be made on signs and symptoms. Confirmation of the diagnosis is made by testing of a stool or enema specimen with the mouse bioassay.

Physicians may consider diagnosing botulism if the patient’s history and physical examination suggest botulism. However, these clues are often not enough to allow a diagnosis. Other diseases such as Guillain–Barré syndrome, stroke, and myasthenia gravis can appear similar to botulism, and special tests may be needed to exclude these other conditions. These tests may include a brain scan, cerebrospinal fluid examination, nerve conduction test (electromyography, or EMG), and an edrophonium chloride (Tensilon) test for myasthenia gravis. A definite diagnosis can be made if botulinum toxin is identified in the food, stomach or intestinal contents, vomit or feces. The toxin is occasionally found in the blood in peracute cases. Botulinum toxin can be detected by a variety of techniques, including enzyme-linked immunosorbent assays (ELISAs), electrochemiluminescent (ECL) tests and mouse inoculation or feeding trials. The toxins can be typed with neutralization tests in mice. In toxicoinfectious botulism, the organism can be cultured from tissues. On egg yolk medium, toxin-producing colonies usually display surface iridescence that extends beyond the colony.

Prevention
Although the vegetative form of the bacteria is destroyed by boiling, the spore itself is not killed by the temperatures reached with normal sea-level-pressure boiling, leaving it free to grow and again produce the toxin when conditions are right.

A recommended prevention measure for infant botulism is to avoid giving honey to infants less than 12 months of age, as botulinum spores are often present. In older children and adults the normal intestinal bacteria suppress development of C. botulinum.

While commercially canned goods are required to undergo a “botulinum cook” in a pressure cooker at 121 °C (250 °F) for 3 minutes, and thus rarely cause botulism, there have been notable exceptions. Two were the 1978 Alaskan salmon outbreak and the 2007 Castleberry’s Food Company outbreak. Foodborne botulism is the rarest form though, accounting for only around 15% of cases (US) and has more frequently been from home-canned foods with low acid content, such as carrot juice, asparagus, green beans, beets, and corn. However, outbreaks of botulism have resulted from more unusual sources. In July 2002, fourteen Alaskans ate muktuk (whale meat) from a beached whale, and eight of them developed symptoms of botulism, two of them requiring mechanical ventilation.

Other, much rarer sources of infection (about every decade in the US) include garlic or herbs stored covered in oil without acidification, chili peppers, improperly handled baked potatoes wrapped in aluminum foil, tomatoes, and home-canned or fermented fish.

When canning or preserving food at home, attention should be paid to hygiene, pressure, temperature, refrigeration and storage. When making home preserves, only acidic fruit such as apples, pears, stone fruits and berries should be bottled. Tropical fruit and tomatoes are low in acidity and must have some acidity added before they are bottled.

Oils infused with fresh garlic or herbs should be acidified and refrigerated. Potatoes which have been baked while wrapped in aluminum foil should be kept hot until served or refrigerated. Because the botulism toxin is destroyed by high temperatures, home-canned foods are best boiled for 10 minutes before eating. Metal cans containing food in which bacteria, possibly botulinum, are growing may bulge outwards due to gas production from bacterial growth; such cans should be discarded.

Any container of food which has been heat-treated and then assumed to be airtight which shows signs of not being so, e.g., metal cans with pinprick holes from rust or mechanical damage, should be discarded. Contamination of a canned food solely with C. botulinum may not cause any visual defects (e.g. bulging). Only sufficient thermal processing during production should be used as a food safety control.

Treatment
Botulism is generally treated with botulism antitoxin and supportive care.

Supportive care for botulism includes monitoring of respiratory function. Respiratory failure due to paralysis may require mechanical ventilation for 2 to 8 weeks, plus intensive medical and nursing care. After this time, paralysis generally improves as new neuromuscular connections are formed.

In some abnormal cases, physicians may try to remove contaminated food still in the digestive tract by inducing vomiting or using enemas. Wounds should be treated, usually surgically, to remove the source of the toxin-producing bacteria.

Antitoxin
In adults, botulism can be treated by passive immunization with a horse-derived antitoxin, which blocks the action of the toxin circulating in the blood. A trivalent antitoxin containing antibodies raised against botulinum toxin types A, B, and E is used most commonly, however a heptavalent botulism antitoxin has also been developed and was approved by the U.S. FDA in 2013. In infants, horse-derived antitoxin is sometimes avoided for fear of infants developing serum sickness or lasting hypersensitivity to horse-derived proteins. To avoid this, a human-derived antitoxin has been developed and approved by the U.S. FDA in 2003 for the treatment of infant botulism. This human-derived antitoxin has been shown to be both safe and effective for the treatment of infant botulism. However, the danger of equine-derived antitoxin to infants has not been clearly established, and one study showed the equine-derived antitoxin to be both safe and effective for the treatment of infant botulism.

Trivalent (A,B,E) botulinum antitoxin is derived from equine sources utilizing whole antibodies (Fab and Fc portions). In the United States, this antitoxin is available from the local health department via the CDC. The second antitoxin, heptavalent (A,B,C,D,E,F,G) botulinum antitoxin, is derived from “despeciated” equine IgG antibodies which have had the Fc portion cleaved off leaving the F(ab’)2 portions. This less immunogenic antitoxin is effective against all known strains of botulism where not contraindicated.

Leave a Reply